- This event has passed.
Convergence Properties of Dynamical Energy Analysis — A Ray-based Method Using Transfer Operators
17 May 2021 @ 15:00 – 16:00
Describing the distribution of vibrational energy in real world applications is challenging, especially in the mid-to-high frequency regime. A very promising way is using densities of rays and creating a transfer operator T by a method called Dynamical Energy Analysis. This has been used in a range of real-world scenarios ranging from gear boxes over car bodies to whole ship hulls.
The role of this operator T is to propagate the intensity of the vibrational excitation across a given structure. Using local properties of the structure, this propagation can account for different material properties and geometrical aspects. For thin shells for example, it describes the vibrations in terms of pressure, shear, and bending wave modes.
In order to compare predictions with experimental data this tool has to be used numerically. This makes it necessary to represent T in terms of a finite basis. To have an efficient implementation with a good convergence and small errors it is necessary to choose an optimal set of basis functions. The talk will cover convergence properties of this method as well comparing them with a simple analytical model.